reprinted with permission from
No Immediate Danger, Prognosis for a Radioactive Earth, by Dr Rosalie Bertell
The Book Publishing Company -- Summertown, Tennessee 38483
ISBN 0-913990-25-2
pages 15-63.

Next | ToC | Prev





Standard-setting Preliminaries

The complexity of setting health standards for exposure to the mixture of radioactive chemicals and ionising particles released in fissioning should be apparent. As a first move towards a reasonable subdivision of the hazard itself, separate standard setting was done for external radiation exposure, i.e. when the radioactive source was outside the body, and internal radiation exposure, i.e. when the radioactive source was inside the body.
        Both these categories can then be subdivided into exposures to particular parts of the body or particular internal organs. The biological effect of an X-ray of the pelvic area differs from the biological effect of a dental X-ray, even if the radiation dose to the skin is the same. Plutonium lodged in the lungs has a different biological consequence from plutonium lodged in the reproductive organs. One can also consider exposures to X-rays, gamma rays, alpha or beta particles and neutrons separately, taking each as internal or external to the body.
        There are further differences in health effects based on differences between people receiving the radiation. Special consideration needs to be given to those who, because of heredity or previous experience, are more susceptible to further damage than the norm or average. Special consideration should be given to an embryo or foetus, a young child, the elderly or those chronically ill.
        The severity of health effects caused by internal exposures will depend on the biological characteristic of the radioactive chemical and the length of time it may be expected to reside in the body. Radioactive cesium, for example, lodges in muscles and is probably completely eliminated from the body in two years. Radioactive strontium lodges in bone and remains there for a lifetime, constantly irradiating the surrounding cells. The usual time required by the body to rid itself of half the radioactive chemical is called the `biological half-life' of that chemical.
        Some radiation health effects are observable in the persons exposed; some effects are only seen in their children or grandchildren because the damage was to sperm or ovum.
        X-rays, gamma rays and neutrons are able to inflict harm on humans even when the radioactive chemical emitting them is outside the body. Beta particles outside the body can cause serious burns and other skin anomalies, including skin cancer. Ionising radiations emitted from within the body by radioactive chemicals taken in by inhalation, ingestion or absorption are even more damaging because they are so close to delicate cell structures. The body is not able to distinguish between radioactive and nonradioactive chemicals and will as readily incorporate the one as the other into tissue, bone, muscle or organs, identifying them as ordinary nutrients. The radioactive chemicals remain in the body until biologically eliminated in urine or faeces, or until they decay into other chemical forms (which may or may not be radioactive). These daughter products and their chemical and radiological properties may be quite different from those of the parent radioactive chemical, for example, radioactive carbon decays into nitrogen. Radiochemical analysis of urine or faeces is the preferred test for most types of internal contamination with alpha or beta particles.






Next | ToC | Prev

back to NRad&BioE | radiation | rat haus | Index | Search