Detrimental Genetic Effects of Ionizing Radiation across Europe after the Chernobyl Accident

Hagen Scherb and Kristina Voigt
Institute of Biomathematics and Biometry

All-Russian scientific-practical conference with foreign participation: "Roentgen-radiological technologies and radiation medicine in treatment – solving liquidation problems of man-made disasters" – on account of the 25th anniversary of the Chernobyl accident, Moscow, February 15th - 16th, 2011
Motivation

Data & Statistical Methods

Results

- Increased thyroid cancer, stillbirths, birth defects, and infant deaths after Chernobyl
- Increased sex odds (SO) after the atomic bomb tests globally
- Increased sex odds (SO) after Chernobyl in Europe
- Increased sex odds (SO) near nuclear facilities (NF)

Conclusion

Outlook
Motivation

- Detrimental genetic effects in exposed human populations have been considered and investigated ever since the discovery of the mutagenic properties of X-rays
- Man made ionizing radiation poses an ongoing increasing environmental and human risk underestimated and not yet fully understood
- The most important public health criteria available for studying those effects in man are
 - cancer
 - birth defects
 - stillbirths
 - neonatal deaths, infant deaths
 - human birth sex odds
- The Chernobyl accident resulted in the exposure of a large number of people to ionizing radiation and created a new situation for epidemiology
Data & Statistical Methods

- **Data**
 - Official national or regional annual or monthly statistics on live births, stillbirths, perinatal mortality, and infant deaths
 - Published congenital malformation data (e.g., Down syndrome, cleft lip and palate)
 - Congenital malformation registry data (e.g. Bavaria, Germany, 1984 - 1991)
 - Cancer registry data (e.g. Czech Republic)

- **Statistical Methods**
 - Logistic model – example: \(
 \log \text{odds} \left(\pi_x \right) = \text{intercept} + \alpha \times d5(x) \)
 - Spatial-temporal trend models with dummy-coding and spatial-temporal interactions
Results: Thyroid cancer in adults in Belarus and the Czech Republic

Mahoney MC et al. 2004

Figure 3. Annual age-adjusted thyroid cancer incidence rate, by calendar year, gender, and area of exposure. Belarus, 1970–2001

Mürbeth S et al. 2004

Figure 2. Crude and directly age-standardized incidence of thyroid carcinoma in females, males and both genders combined in the Czech Republic, change-point (CP) and reduced change-point (CPr) linear logistic regression models (see Table 1).
Results: Stillbirths in Europe

Scherb H et al. 1999

Figure 2 European stillbirth proportions 1980–1992 and synoptic linear logistic regression model according to data in Table 2 and model information in Table 6
Results: Birth defects in Bavaria, Germany, 1984 – 1991

Scherb and Weigelt 2003

<table>
<thead>
<tr>
<th>Radiation Dose (mSv/a)</th>
<th>OR per mSv/a</th>
<th>95% CL</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>1.51</td>
<td>[1.34, 1.70]</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results: Male sexual organ defects in Bavaria, Germany, 1984 – 1991

odds ratio (OR) for jump in October 1986: OR = 2.26, 95% CL [1.58, 3.23], p-value < 0.0001
Results: Infant death in Germany, 1970 – 2008

Sex odds of infant death (SO ID; < 1 year; 1970 - 2008) in Germany, Jump SOR 1987: 1.054, 95%CI=[1.019, 1.091], p=0.0024
Results: Increased sex odds (SO) after the atomic bomb tests globally

23 European countries 1950 — 1990; USA 1950 — 1990

PTBT: Partial Test Ban Treaty
Results: Increased sex odds (SO) after Chernobyl in Europe

38 European countries 1975 — 2007; USA 1975 — 2002

Live birth sex odds

Europe

USA

Chernobyl gender gap

Results: Increased sex odds (SO) after Chernobyl in Europe

Less exposed countries: France and Germany

Highly exposed countries: Belarus and Russian Federation
Results: SO near nuclear facilities, Germany and Switzerland
Results: Increased sex odds near nuclear facilities (NF)

In probability theory and statistics, the Rayleigh distribution is a continuous probability distribution. As an example of how it arises, the wind speed will have a Rayleigh distribution if the components of the two-dimensional wind velocity vector are uncorrelated and normally distributed with equal variance. The distribution is named after Lord Rayleigh. (WIKIPEDIA)
A reciprocal distance law (1/r) was applied in the KiKK (Germany) study, but here it works only when data are restricted to distances greater than 10 km.

Kusmierz R, Voigt K, Scherb H 2010

Improved paper ESPR
Conclusion

- Low-dose ionizing radiation increases
 - thyroid cancer in adults
 - congenital malformations
 - stillbirths
 - infant deaths
 - secondary sex odds in humans

- Our results most clearly disprove the prevailing believe (e.g. by UNSCEAR) that radiation-induced genetic effects have yet to be detected in human populations

- For a fundamental criticism concerning the basis of radiation safety standards see The Lesvos Declaration, 6 May 2009.
Outlook

- Important data on underestimated environmental and health topics are partly available

- However, often there is no (optimal) utilization of the existing data bases

- Thus, greater input from mathematicians and statisticians is urgently needed to scrutinize those data

- To achieve this goal, the full spectrum of different data analysis approaches should be considered and applied appropriately

- Improved interdisciplinary skills are needed at all stages of environmental health research
Thank you for your attention

Dr. Hagen Scherb and Dr. Kristina Voigt
Institute of Biomathematics and Biometry, Helmholtz Zentrum München –
German Research Center for Environmental Health
Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany
scherb@helmholtz-muenchen.de